HKE X

EEBXEHM

DEVELOPERS GUIDE

HKEX Orion Market Data Platform
Derivatives Market Datafeed Products (OMD-D)

Version 2.0
11 February 2026

© Copyright 2026 HKEX
All Rights Reserved

OMD-D Developers Guide Developers Guide

Contents

10.1

INTRODUCGTION ...ttt ettt e e et et et e e e e et ee et eeeeeeeee e et eeeaeeeaeaaaaeeteseesaeeeeeseeeeeeeeaeeeeaeeens 4
DATA STRUGCTURE ...ttt ettt ee e et e e et e e e e e e e e et e e e e eaeeeaeaeeeeeeeeeaeaeeeeeeeeeeseeeaaeeaaeeees 5
LYol o 1= o 1= PP 5
L LT TR oL £ PP 6
Y LIS Tl o 1= o =Y U 6
IMESSAEE FOIMALS coiiiiiiiiiiiiieiiiecceeeee ettt et et et et et et et et et et et et eeeeeeeeeeeeeeeeeeeeeeeeeeeeaeees 7
EINDIAN L.ttt ettt ettt ettt ettt ettt ettt ettt e sbaeeat e e st e easeeesaeeeatee e s aaeeabeeeaaeeabeeeaaeenbeeenaeeenbaeensaeenbeeensneenne 7
FIELD ATTRIBUTES . .cciiieiiiiiiieiiieieeeeeeeeeeeeee ettt ee e et e ee e e e e e ee et eeeeeeeeeeeeeaeaeaeaeaaeateseeaseesseeeeaeseesaeeeenenens 7
NUITVAIUEBS ..ttt ettt e e et e e et e e e et e e e aabaeeeannbaeeenssaaeesnbaeeeansaeesnnneeas 7
CUITENCY VAlUBS. ...ttt ettt e et e st e e ab e sab e e e bt e sabeeeaneesabeesnneens 8
MESSAGE PROECSSINGuviiiuiiiiiieetiteiteestteesteesteeesaseeeseeessaeessssessseenssssssssessessnssesnsesensesenssssssasenns 8
] =T e D 1Y USRS 8
NOFMAI TrANSACTION ..eeuvveiiieeiie ettt ettt se ettt st e et e esaaeebeeesaaeebeeesbeeenbeeebaeenbaeensneenbeeensneenns 9
RECEIVE IMIUITICAST «.vveeete ettt ettt ettt et e e e saa e e b e e saeeeabeeebaeebaeesaneebaeensneenns 9
[Tl N e oY 4 o) o I PPt 9
Process Data IMESSAZEccuii ittt et e s 11
Market Status update arrangEMENT........eiuiiiiiiiieeite et 11
BUIlING UP DEFINTTIONS ..ottt ettt et ettt sae e e bt e saneenanes 11
Retrieval of outstanding orders from Add Order (330) messages in Order Feed Channel (For D-
[N 0]] 1) PP UUTPRROt 12
Partitions ASSISNMENT ..ccciiiiiiiiiiiiieiee ettt e e et et e e e e e e e e e e e e e e et et e e eaeeeeeeeeeeeeeeeeaeaaaes 12
Trade AMENAMENT ..eeiiiiiieeeiiiee ettt e ettt e e st e e ettt e e seasteeesabbeeeeabeeesanaeeesabneeeennnaeesnanneas 12
Calculated Opening Price reset when PRE-OPEN s€SSion €ndccovueeeeiiiieeeniiieeiniieeesiieeenns 13
Next Day Effective INStrUMENTS.....cocuiiiiiiiieeiie et 13
Intra-Day created INSTrUMENTSoooiiiiiiieiee ettt et sab e e bt esaneenaees 13
Message routing for SOM and NON-SOMc.c.oiiiuiiiiiiiiiieeiiie ettt ettt sane e 13
After Hours Trading (T+1) — Clarification on Trading Informationcccceeeioiieiiiiieeccneennn. 13
Trade (350) message for Full OrderBook when Preopen session ends........cccceeeecuveeeecveeeennneen. 14
Alert ID in Market Alert (323) MESSAZEuuiieiciieeeiiiieeeiteeeeeteeeeeiteeeeeeareeeesaeeeaaasseeeeassseeeasseeaans 14
Process Control Message (HEartheats)c.ucccueieieeiiiieeiiie et eae e eave e snae e 14
Process Disaster Recovery Signal Message (105)c.ueeiueeeiureereeeireeeieeeieeeneeenseeesseesseeesseesnnes 15
Compression 0N Payl0ad IMESSAZEcceiuuieeeiiieeeeiiieeeireeeestteeeeiateeeesseaeesaseeeaassseeeansseassnsseeaans 15
= Tolo 1YL= o O PP PP P PP PP PPPPPPPPPPPPPPPPRE 15
REtranSMISSION SEIVICE. ...ceiiiiiiiiiii ettt e e e e ettt e e e e e st e e e e e e e e ennnneeeeens 15
Multiple REtranSmMiSSION SEIVEIS....ciiii it e e e ettt e e e ee st e e e e e e sirae e e e e e eessabaaaeeeeeeesansaaseeeeas 16
RetransmiSSiON LOZONcociiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeee ettt eeeeaeaeaeaeaaaaees 16
Retransmission LOZON RESPONSEcceiiiuiiiiiiiteeeiiiiiieeee e e eesitiee e e e e e e sitaeeeeeseessabaaaeeesesssannanaeeeens 17
Retransmission HEArtheatsoiuiiiiiiiiieeiiecte e e 17
RetranSmMiSSION REGUEST ..cciiiiiiiiiiiiie ettt e e ettt e e e s e st e e e e e e e saabaaaeeeeeesnnsnaaeeeees 17
REtranSmMIiSSION RESPONSE.c.cciuiiiiiiieeee ettt e e ettt e e e ee sttt et e e s e e sabaaeeeeeeesanbaaeeeeseessnsanaeeeees 18
RetransmMiSSION IMIESSAZE ..cciiiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt eeeeeeeeeaeeeaeeaeaaees 18
RetransmiSSION LIMIES.coi ittt e e e ettt e e e e e et e e e e e e ennnneeeeens 18
Processing of RTS retransmission data........cc.eiieeuiieeiiiieieiiie et eeree e eetee e e e e eaaeeeeanns 20
Compression on Payload Message from Retransmissionccccceeeeeiuieeeiiieeeeeiieee e 20
RETIESI SEIVICE ..ttt ettt ettt sae e et e e sate e sbaeesabeeeabeesaneenaees 21
L2 BT T o 1Y o ARt 21
Processing @ REFIESH ...c...uiieeee e e st e e et e e e et e e e enaaaeeennaeeeenes 21
RACE CONDITIONS. .. cieieieieieieeeieeeeeeee ettt ettt ettt e e e e et e e et e e et e e e e e e et eeeaeaeaeaeaeeeaeaeaaseeeeeeeeeeaeaeaeaaees 25
AGGREGATE ORDER BOOK MANAGEMENT ...t se s e s e s e s e seae s e e e e e e e ae e 25
FULL NORMAL ORDER BOOK MANAGEMENT ..oiiiiiiiiiiiiiiiieieieiieeieeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 26
FULL NORMAL ORDER BOOK AND AGGREGATE IMPLIED QUANTITY ..coeiiiiiiiiieiiieiiieieieieieeeeeees 26
EXCEPTION HANDLING AND SPECIAL TRADING CONDITIONcoviuiieniieniiieeniieeiiieesiieesiieesineenaees 28

Late Connection / STartup REfIE@SNcuiiicieiiiie e s e e snaeeeanes 29

OMD-D Developers Guide Developers Guide

10.2 INEra=day REFIESN ...ttt ettt sb e bt e bbb et e s sae 29
10.3 Client APPliCation RESTAIS ...cccuviieieiiee et e et e e et e e et e e e e taeeeessaeeeensaaeeannnaeaans 30
10.4 SEQUENCE RESEE IMIESSAZE .. s s s s s e s e s s e s e s e s e s e s e s e s e e e s e s e e e e e e e s e aeseaaananaanneasasannss 30
10.5 OMD-D Restarts Before Market OPENccccuiieieiiie e eeieeeeecee e e e st eeeesatae e e enaaeesaaeeeans 30
10.6 OMD-D Restarts After Market Open (Intraday Restart)..........cceecuveeieiieeeiiiee e e e 30
10.7 OMD-D COMPONENT FAIOVETeiiiiiiiiiiiiieiiieeitee ettt sttt e st e e bt e e snneesanes 31
10.8 OMD-Index COMPONENT FAIOVET ...cuuiiiiiiiiiiieiiieiieeei ettt st st s e i 33
10.9 I 1= =11 (o) V=T PR RSN 33
10.10 Special Trading CONITIONceiuieiiit ittt ettt e se e st e e st e st e eneesbeeennnesans 34
APPENDIX A — Pseudo code to connect and receive multicast channelcccooceevieiiiiienieeiiieniee e 35
APPENDIX B — Pseudo code of Line Arbitrationcoiueerieeiiienieeiiee e siee st sieesiee st esveesbeesneesanaesanee s 36
APPENDIX C — Pseudo code for processing retransmission data..........ccceeeeeeieeeiiiieeeciiee e e e einee s 38
APPENDIX D — Pseudo code for processing Refresh snapshot packetccoceeviieiiiiiiieniiiiieniecieeeeen 40
APPENDIX E — Pseudo code for processing Aggregate Order BOOk MESSageccccueerveeniueeiieenieesiieenneenn 41

APPENDIX F — Pseudo code for processing compressed multicast data.......ccccevveeiiieiiiienieciiicniecieenieenn 42

OMD-D Developers Guide Developers Guide

1 INTRODUCTION

The target readers of this document are the technical personnel of Market Data Vendors, End-Users,
Application Service Providers (“ASPs”) and Independent Software Vendors (“ISVs”) of HKEX Orion Market
Data Platform — Derivatives Market (“OMD-D").

This document contains guidelines and suggestions for OMD-D feed handler developers. All information
included in this document is presented for reference only. Clients should design and implement their own
OMD-D feed handler that is tailored to their business and technical requirements.

The scope of this document covers line arbitrage, packet and message processing, retransmission and
refresh mechanisms, order book maintenance and exception handling.

The purpose of this document is to answer questions that developers may have after reading the OMD-
D interface specification. It shows examples of usage and code snippets to help developers understand

the logic behind the market data disseminated from OMD-D.

Table 1. Acronyms used in this document

FH Feed handler

HA High Availability

MC Multicast

RFS Refresh Server

RTS Retransmission Server

T Session Regular Trading Session
T+1 Session After Hours Trading Session
UDP User Datagram Protocol
XDP Exchange Data Publisher

Diagram 1. A Basic Client Application Layout

OMD-D Developers Guide Developers Guide

RTS

i f
Live Data Refresh Reqmeip

Lime Handling

Unfiltered meszage

Line Arbitrage

Filtered message

Message Handling

Market update

Subscribe on need basis

2 DATA STRUCTURE

Multicast messages are structured into a common packet header followed by zero or more messages.
Messages within a packet are laid out sequentially, one after another without any spaces between them.

XDP Header M1 M2 Mn

16 bytes

A packet only contains complete messages. In other words, a single message will never be fragmented
across packets.

2.1 Packet Header

All packets disseminated from the OMD-D feed have a common packet header. This format is consistent
across live, retransmission and refresh. An XDP packet consists of a 16-byte header followed by messages.

There are no delimiters between the packet header and messages or between messages themselves. One
has to use the size of the header and in each individual message to determine the start of each message.

Table 2 below shows the packet header structure. The offsets in the table represent the number of bytes
away from the beginning of the packet.

OMD-D Developers Guide Developers Guide

2.2

2.3

Table 2. Packet Header

mmmm

PktSize Uintl6 Binary integer representing size of
the packet (including this header)
MsgCount 2 1 UInt8 Binary integer representing number
of messages included in the packet
Compression 3 1 Uint8 Indicate the messages in packet are
Mode compressed data and require

decompression
- 0Oindicates no compression
applied on messages in the
packet
- 1lindicates compression
applied on messages in the
packet
SeqNum 4 4 Uint32 Binary integer representing the
sequence number of the first
message in the packet
SendTime 8 8 Uinte4 Binary integer representing the
number of nanoseconds since
January 1, 1970, 00:00:00 GMT,
precision is provided to the nearest

millisecond
PkiSize | | Ms9 o g s SeqgNum | SendTime
Count Mode q
2 bytes 1 byte 1 byte 4 bytes 8 bytes

The Compression Mode field in the packet header declares whether compression by using RFC-1950
ZLIB is applied on the message payload (i.e. a cargo of all messages within the same packet). For the
detail of compression operation, please refer to 5.2.6 Compression on Payload.

Heartbeats
Heartbeats consist of a packet header with Compression Mode and MsgCount set to 0 and do not
increment the sequence number of the multicast channel. SeqNum in the packet header of Heartbeats is

set to the sequence number of the previous message sent on the channel.

The Heartbeat message syntax is identical across OMD-D services.

Message Header

The format of each message within a packet varies according to message type. However, regardless of
the message type, all messages start with a two-byte message size followed by a two-byte message type.

MsgSize Binary integer representing the length of the message (including the header)

OMD-D Developers Guide Developers Guide

24

4.1

MsgType Binary integer representing the type of message. Please refer to the HKEX OMD-D Interface
Specification for the full list of message type and the layout of each message type

MsgSize MsgType

2 bytes 2 bytes

Message Formats
Please refer to the HKEX OMD-D Interface Specification for details on the following message types:

- Control messages

- Retransmission

- Refresh

- Reference Data

- Status Data

- Order Book Data

- Trade and Price Data
- News

- Clearing Information

ENDIAN

All binary values are in Little Endian byte order, which means the first byte (lowest address) is the least
significant one.

In C/C++, one solution is to create a structure containing all the fields from the packet header and cast
the pointer to a packet, to a pointer to such a structure. For instance:

struct XdpPacketHeader

f
[\

uintl 6t mPktSize;

uint8 t mMsgCount;

uint8 t mMode;

uint32 t mSeqNum;

uint64_t mSendTime;
-

S

Assume the packet is passed as a pointer to const unsigned char, which could look like this:
struct PacketHeader* hdr = static_cast<PacketHeader*> (packetPtr);
One packet can contain multiple messages. Clients should locate the beginning of each message based

on the message length and process each message separately. The number of messages within a packet is
indicated by MsgCount field in the packet header.

FIELD ATTRIBUTES

Null Values

From time to time certain fields cannot be populated and specific values are used to represent null. This
is currently used within Int32 fields of the Trade (350), the Aggregate Order Book Update (353) message,

OMD-D Developers Guide Developers Guide

4.2

5.1

the Trade Statistics (360) message, the Trade Amendment (356) message, the Calculated Opening Price
(364), the Open Interest (366) message as well as the Add (330) / Modify (331)/ Delete (332) Order
messages.

The Int32 null representation is 0x80000000 (Hex 2’s complement).
The Int64 null representation is 0x8000000000000000 (Hex 2’s complement).
Currency Values

See the 1SO-4217 Currency Codes for a full list of possible data values. Currently, the system uses the
following codes:

‘HKD’ - Hong Kong dollars
‘USD’ - USdollars
‘CNY’ — Chinese Renminbi

HKEX may add or delete currency code(s), whenever applicable, in the future.

MESSAGE PROECSSING

Each multicast channel maintains its own session. A session is limited to one business day. During the day,
message sequence number is strictly increasing and therefore unique within a channel.

Start of Day

The maintenance window of OMD Derivatives Market (“OMD-D") starts right after the system shuts down
for the day until 6:00am the next business day. During the maintenance window, there could be system
maintenance and housekeeping operations where OMD-D may be started up and shut down
intermittently with the natural consequence of messages (e.g. Sequence Reset) sent via some multicast
channels. In this regard, Clients are advised to make connection to OMD-D at or after 6:00 a.m. every
business day to ensure that the data received from OMD-D are good for the start of the day.

Clients start at OMD-D startup time
B Clients start listening to real-time multicast channels (Each OMD-D data product is delivered via a
group of real-time multicast channels)

During the startup of OMD-D server (5:00 a.m. — 6:00 a.m.), Sequence Reset (100) messages and
large volume of market initiation messages may be sent at high speed and a client may fail to
receive the Sequence Reset (100) message because of the timing of its connection to the OMD-D
server. Clients should therefore build in the flexibility in their feed handlers to handle such
situations. Or they are advised to make connection to the OMD-D server after 6:00 a.m. and obtain
the latest market image from Refresh service. For details of processing Sequence Reset (100)
message, please refer to section 10.4 Sequence Reset Message

B OMD-D sends Reference Data messages below
€ Commodity Definition (301)
@ Class Definition (302)
@ Instrument Definition (303)
€ Combination Definition (305)

B Remark:
€ Clients may receive multiple Sequence Reset messages during the start of day. The general
handling should be reset the next expected sequence number and clear all cached data for all

OMD-D Developers Guide Developers Guide

5.2

5.2.1

5.2.2

instruments received from the channel. Please refer to section 10.5 OMD-D Restarts Before
Market Open

@ After receiving the Sequence Reset message, clients should also check the sequence number of
next incoming packet. If the sequence number is not equal to 1, it indicates that there is packet
loss. Please refer to section 10.4 Sequence Reset Message for details.

€ Sequence Reset message are sent individually on each channels. Client may experience long
time difference on Sequence Reset messages between different channels during OMD-D
startup.

Clients start after OMD-D startup time and miss sequence reset message and reference data
B Please refer to section 5.3.2.2 Processing a Refresh for exception handling of late connection

Normal Transaction

Normal message transmission is expected between when the market opens for trading and when the
market is closed. Heartbeats are sent regularly (currently OMD-D sets to every 2 seconds) on each channel
when there is no line activity.

UDP multicast network/transport protocol is used in OMD-D and data is sent to different broadcast
streams (known as multicast channels).

UDP is not a reliable transport protocol. So packets may be lost or come out of order. The data on each
channel comes from two redundant lines, A and B, to minimize the risk of losing a packet.

Clients receive and process OMD-D data

- Receive real-time multicast messages from Line A and Line B
B Create two sockets using Multicast IP / Ports of Line A and Line B
B Read data from multicast channel for Line A and Line B

- Line Arbitration using sequence number in packet header
B Discard duplicate packets
B Reorder packets
B Detect message gap

- Process multicast messages

B Process Data Message
B Process Control Message (Heartbeat)

Receive Multicast

Clients join particular multicast group in order to receive the desired data. Data is categorized and
available from dedicated multicast groups.

Clients connect and receive real-time multicast messages from Line A and Line B.

Please refer to APPENDIX A - Pseudo code to connect and receive multicast channel for example on
connecting multicast channels.

Line Arbitration

The network/transport protocol used in OMD-D is UDP multicast. The data in OMD-D is divided into
broadcast streams (known as channels). The data on each channel comes from two redundant lines, A
and B. UDP is not a reliable transport protocol like TCP but because of this it is much faster, although

OMD-D Developers Guide Developers Guide

this means it is possible that packets may be lost or come out of order. Two lines with identical data
minimize the risk of losing a packet; however the risk still exists.

Note

1. Clients should not prioritize line A over line B. They should listen to both line A
and B at the same time. Line A is not guaranteed to be faster than B. They should
both be treated with the same priority. The approach that assumes listening to
line B only if there is a gap detected on line A is incorrect. In general, it is
recommended to have an abstraction layer between the gap detection module
and the source of packets. In other words, the gap detection module does not
have to know where the packets are coming from, it just needs to monitor
packet sequence numbers.

2. The packaging of messages between Line A and Line B may be different. In the
example below, three packets are sent on each line, but message ‘OrderUpdate3’
appears in one packet from Line A but in the subsequent packet on Line B.

Diagram 2. Normal Message Delivery of Primary and Secondary Line (Line A and B)

Primary | Secondary
Messages mMC SN SN MC Messages
OrderUpdate1 3 101 101 2 OrderUpdate1
OrderUpdate2 OrderUpdate2
OrderUpdate3
2 104 103 3 OrderUpdate3
Trade1 Trade1
OrderUpdate4 OrderUpdate4
Trade2 2 106 106 2 Trade2
Statistics 1 _ | _ _ Statistics 1

Note
- MC: Message Count in a Packet

Clients receiving OMD-D feed are recommended to implement the following functionality in order to
provide appropriate line handling:

1. Discarding duplicate messages
2. Reordering messages
3. Gap Detection

All of the above can be achieved by remembering the next expected sequence number. Please refer to
the Gap Detection Diagram in the OMD-D Interface Specification for reference. Basically, a gap
detection mechanism may work like this:

When clients receive a packet from Line A or Line B,
- Handle the first packet, process each message within the packet and advance the next expected
sequence number (nextSeqNum) by 1

- When subsequence packet is received, compare the current seqNum in the packet header with the
nextSeqNum
- If seqNum > nextSegNum, it is a gap and spool the message
- If (segNum + msgCount in packet) < nextSeqNum, it is a duplicate packet and skip

- When processing each message within the packet
- If (segNum + message processed count in this packet) < nextSeqNum,
It is a duplicate message and skip

OMD-D Developers Guide Developers Guide

- If (segNum + message processed count in this packet) = nextSeqNum,
Process it and advance the next expected sequence number (nextSeqNum) by 1

Please refer to APPENDIX B - Pseudo code of Line Arbitration for example on detecting gap or
duplicate packet.

Possible approaches for handling message gap

Approach 1: Clients wait some time to fill the gap from the redundant line (or the packet may
come from the same line, possibly out of order)

If a given amount of time has passed and there still is a gap, the clients should send a retransmission
request. While awaiting for retransmission all packets coming from the live feed should be spooled.
After processing the retransmitted packets, clients should process the spooled packets/messages.

Note

1. While waiting for the retransmission, another gap can occur. Clients should take
this into account. One possible solution would be to keep track of how many
gaps have been detected and for which gaps a retransmission request has
already been sent.

2. Only a continuous series of packets/messages from the spool should be
processed.

3. Any gaps should await to be filled either from the redundant line or the
retransmission server.

4. Check if the gap in spooled messages can be filled at regular interval.

5. If the gap cannot be recovered for specified time, clients should recover from
refresh server.

Please refer to APPENDIX B - Pseudo code of Line Arbitration for example on processing spooled
messages.

Approach 2: Issue a retransmission request immediately after detecting a gap

If the missed packets/messages come on the redundant line before they come from the retransmission,
clients will simply process them and discard the retransmitted ones.

5.2.3 Process Data Message

5.2.3.1 Market Status update arrangement

This section will be further updated with details in the next version.

5.2.3.2 Building up Definitions

OMD-D Developers Guide

301 Commeodity Definition

Commeodity Name
Commaodity ID (e.g HKB)
Underlying Code (Stock Code)
Underlying Type

Decimal In Underlying Code
Base Currency
Underlyinglssuer

CACreated
EffectiveTomorrow

302 Class Definition

Instrument Class Name

Instrument Class Key

Price Quotation Factor
Contract Size
DecimalinContractSize
DecimalinStrikePrice
DecimalinPrice

TickSize

Tradable

BaseCurrency
Settlement Currency ID
Effective Tomorrow

303 Instrument Definition

Symbol

Instrument Class Key

DateTimelastTrading
StrikePrice

EffectivelastTradingDate

DateTimeFirstTrading
InstrumentStatus
DecimalinStrikePrice
DecimalinPrice
FinancialProduct
PutOrcCall
ContractSize

Developers Guide

305 Combination Definition

LegOrderbookiD
LegSide
LegRatio

PriceQuotationFactor
NumberOfiLegs

VCM Flag

ISINCode

Effective Tomorrow

Below are the remarks needed to be noted when building the relationship of Definitions.

Tradable Instrument
= All tradable instruments, including suspended instruments, of the current business day are
provided under Instrument Definition (303) message at the start of day. Intra-day created
instruments are also declared in this message at real time. In Instrument Definition (303)
message, the field “Instrument Status” declares the initial status (active/suspended) of the
instrument in derivatives trading system.

Instrument Class Key
= The field “InstrumentClassKey” not only allows clients to build the linkage between Class
Definition (302) message and Instrument Definition (303) message, but can also be used as a
short-cut key to link with Market Status (320), Commodity & Class Status (322) and THM
Trigger (325) messages

5.2.3.3 Retrieval of outstanding orders from Add Order (330) messages in Order Feed
Channel (For D-Lite only)

All outstanding orders of selected instruments are transmitted through Add Order (330) message on
a snapshot basis and refreshed every second.

The transmission of Add Order (330) message is similar to transmission of refresh cycles and each
cycle is ended with a Refresh Complete (203) message. For detail on processing refresh, please refer
to 5.3.2.2 Processing a Refresh.

The snapshot interval may take longer than one second if the volume of the outstanding orders is

exceptionally high, so clients should always rely on the Refresh Complete (203) message to determine
the end of a full cycle. Heartbeat messages may not be sent between two cycles.

5.2.3.4 Partitions Assignment
This section will be further updated with details in the next version.

5.2.3.5 Trade Amendment

OMD-D Developers Guide Developers Guide

5.2.3.6

5.2.3.7

5.2.3.8

5.2.3.9

When there is a trade amendment or trade cancellation, OMD-D broadcasts the Trade Amendment
(356) message. Upon receiving a Trade Amendment (356) message for amendment or cancellation, a
client’s application could utilize the fields “OrderBookID” and “TradelD” to locate which trade is being
amended or cancelled.

Calculated Opening Price reset when PRE-OPEN session end

During the Pre-Open session, Calculated Opening Price (364) message is sent for instruments for
which pre-market opening is available. At the end of the Pre-Open session after completion of
matching, “CalculatedOpeningPrice” value will be reset to N/A.

For Derivatives Fulltick (DF) clients, it should be noted that Add Order (330), Modify Order (331) and
Delete Order (332) messages are not transmitted during the Pre-Open session. At the end of the Pre-
Open session, OrderBook Clear (335) message is sent to signal that clients should clear out the order
book in the memory to get ready for the transmission of all outstanding orders via the Add Order (330)
messages. Please note that the OrderBook Clear (335) message and market status are sent in separate
channels. Clients may experience different message inbound order due to race condition.

Next Day Effective Instruments

OMD-D disseminates the next day effective instruments after market close of T Session. For those
next day effective instruments, “EffectiveTomorrow” field is defined as ‘True’ in Instrument Definition
(303) message. Please note that no OrderBookID is provided in Instrument Definition (303) message
for those next day effective instruments, and no calendar spread instrument (i.e. combination
instrument) is covered in next day effective instrument declaration.

Intra-Day created Instruments

OMD-D disseminates the intra-day created instrument at real time once the instrument is created in
the derivatives trading system. Tailor-Made Combo Instrument and Flexible Options are examples of
intra-day created instruments.

When a new instrument is created in market, Instrument Definition (303) is sent for the definition of
the instrument. If the instrument is a calendar spread instrument (i.e. combination instrument),
Combination Definition (305) will also be sent.

Clients should process the Definition Messages immediately and prepare for the orders and trades to
be broadcast on the newly created instrument.

Message routing for SOM and non-SOM
In OMD-D, messages are classified into SOM (Stock Option market) and Non-SOM (Non-Stock Option

Market) for distribution via separate channels. The message types in the table below are not
classifiable and therefore will be routed to both SOM and Non-SOM channels.

OMD-D message types Both channels Remarks

Commodity Definition (301) Yes

Commaodity & Class Status (322) Yes When the field “InstrumentClassKey” = 0
Market Alert (323) Yes

5.2.3.10 After Hours Trading (T+1) — Clarification on Trading Information

OMD-D Developers Guide Developers Guide

Information OMD-D Notes
Message

When issued at start of day, the latest Ol

= Day Indicator = 1, i.e. for Previous Trading Day

= For products tradable in T+1 session, it is the Ol after the
T+1 session. However, it could be different from the Ol of
the previous day published in the Daily Market Report on the
HKEX website

Open Interest (Ol) Irggsanst = For products not tradable in T+1 session, it is the same Ol as
(both Gross and Net Ol) (366) provided around end of day of previous day in general
When issued around the end of day,
= Day Indicator = 0, i.e. for Current Trading Day
= The Ol as of the end of the current day, not covering the
transactions in the following T+1 session
= Same Ol as published in the Daily Market Report on the
HKEX website in general
= Settlement price as of the end of the regular trading session
Settlement Price Open = Settlement price is determined once only at the end of a
Interest settiement cycle which includes the T+1 session of the
(366) previous day and the regular trading session of the current

day

5.2.3.11 Trade (350) message for Full OrderBook when Preopen session ends

For instruments under the market with Pre-Open session, Trade messages (350) will be sent for those
committed trades at the end of the Pre-Open session. Those Trade (350) messages will not be able to
reference in OrderBook because no OrderBook (330, 331 & 332) messages are sent during Pre-Open
session. Trades concluded in Pre-Open session can be identified in Trade (350) message where by the
field ‘Match Type’ has the value of 1 (Opening Uncross).

5.2.3.12 Alert ID in Market Alert (323) message

5.24

In any business day, the field ‘Alert ID’ uniquely identifies the key of the Market Alert (323) message.

Alert ID will be repeated in separated Market Alert (323) messages when a message is broken down
into multiple Market Alert (323) messages. The ‘Header’ in those Market Alert (323) messages
contains the same information and the last Market Alert (323) message under the same Alert ID is
indicated by the ‘LastFragment’.

Process Control Message (Heartbeats)

Heartbeats are disseminated at regular time intervals. Clients can use heartbeats to check if the feed is
alive. If there is no heartbeat for longer than a configurable time (please refer to OMD-D Interface
Specification Section 2.2.2 for the multicast heartbeat interval & Section 4.3 for the unicast heartbeat
interval currently set in OMD-D), then it indicates an outage of data transmission.

Note that OMD-D sends heartbeats only when there is no market data being disseminated. When there
is market data on the line, no heartbeats will be sent.

Heartbeats consist of a packet header with MsgCount set to 0 and do not increment the sequence
number of the multicast channel. SegqNum in packet header is set to the sequence number of the
previous message sent in the channel.

When receiving heartbeat packet, clients should ignore this packet in gap detection. Otherwise, clients
may fail to detect the actual message gap.

OMD-D Developers Guide Developers Guide

5.2.5

5.2.6

5.3

5.3.1

Table 3. Gap Detection Example

T1 101 101

T2 102 102

T3 103 Packet with SeqNum 103 is lost
If client receives heartbeat message but cannot
find the corresponding packet with same

T4 103 (Heartbeat) 103 (Heartbeat) .
sequence number, it should be a message gap
and client should recover the lost message

T5 104 104

T6 105 105

T7 106 106

Process Disaster Recovery Signal Message (105)

The Disaster Recovery (DR) Signal message indicates to clients whether OMD-D is operating in the primary
site or the backup site. See Section 10.9 on how to handle OMD-D site failover making use of the DR
Signal message.

Compression on Payload Message

In packet header, the field ‘Compression Mode’ indicates whether the compression has been applied to
the payload (i.e. a cargo of all messages within the same packet). Clients should read the Compression
Mode in every packet header and determine if decompression (i.e. RFC-1951 DEFLATE) is required to
apply on the received payload before processing the messages. Compression feature is enabled in
specific channel in OMD-D. Below are the reference of data compression and decompression method
employed in OMD.

o RFC-1950, ZLIB Compressed Data Format Specification version 3.3

o RFC-1951, DEFLATE Compressed Data Format Specification version 1.3
Please note: Message traffic will be reviewed regularly, and would turn on compression when needed.
Therefore, it is suggested client to implement system logic to determine whether executing or bypassing
the decompression based on the “Compression Mode” field in packet header, to minimise future system
change.

Recovery

Since UDP multicast is not a reliable protocol, there is a risk of packet lost. Clients can recover lost
messages using the retransmission server or the refresh service with consideration on various factors
such as message gap size, recovery time/event and etc.

Retransmission Service

Both OMD-D Feed and OMD-Index Feed have their own dedicated RTSs. For small message gaps, clients
can recover lost messages using the RTS which is connected to clients by the more reliable TCP/IP
protocol. In order to receive lost messages, clients need to send a Retransmission Request. The RTS will
respond with a Retransmission Response which can indicate that either the request has been accepted
or rejected (the RetransStatus field). If accepted, the RetransStatus field will be 0, and if rejected, the
values can be 1, 2, 100 or 101.

https://www.ietf.org/rfc/rfc1950
https://www.ietf.org/rfc/rfc1951

OMD-D Developers Guide Developers Guide

The retransmission server contains only a relatively small number of messages from each broadcast
channel and covers the market activities for the last 50000 messages under normal market conditions.
The RTS should not be thought of as a means of full data recovery. It serves only as real time
retransmission of a relatively small number of lost messages.

Clients can have only one connection with the RTS.

The sequence number range as well as the number of requests per day is limited to 1000 requests, and
10,000 messages per request. The RTS daily limit of 1000 requests for OMD-D and OMD-Index are
counted separately.

Note

If clients need to issue a retransmission request for a gap bigger than the allowed
limit, they need to split the requests into appropriate amount of smaller requests.

Retransmission Logon, Retransmission Logon Response, Retransmission Request and
Retransmission Response message will begin with packet header which is same
format as real time. Clients should ignore the sequence number in Retransmission
packet header when sending or processing the Retransmission messages.

5.3.1.1 Multiple Retransmission Servers
Four RTSs, two on primary site and two on backup site, are all active and available for connection after
OMD-D has been brought up. Client should connect to any one of the other three RTSs in case the first
connected RTS encounters any issue. This is a part of the High Availability design and is meant to

provide clients with a seamless service in case of the failure on any one of the RTSs.

The above design is also applicable to the RTSs dedicated for OMD-Index Feed.

5.3.1.2 Retransmission Logon
In order to receive retransmission, clients must establish a TCP/IP connection with the RTS and initiate
a session by sending a Logon message within the logon timeout interval (5 seconds). If clients do not

send a Logon message within the logon timeout interval, the server will close the connection.

Table 4. Logon Packet Header

PktSize 32

MsgCount 1

Filler

SegNum Not used

SendTime The number of nanoseconds since January 1, 1970, 00:00:00

GMT, precision is provided to the nearest millisecond.
Table 5. Logon Request Message

MsgSize 16
MsgType 101
Username Username to logon in plain text

(Note: Please padded with NULLs after the username to fill up the
12 characters field)

Developers Guide

OMD-D Developers Guide

5.3.1.3 Retransmission Logon Response

The RTS immediately sends a LogonResponse message after it receives a Logon request. The
SessionStatus field indicates if the Logon was successful. The possible values of this field are:

Table 6. Logon Session Statuses

Logon Session Status

0 Session Active
5 Invalid Username or IP Address
100 User already connected

The session, once established, can be reused for sending any subsequent retransmission requests. To
maintain the session, a client must respond to heartbeats sent by the RTS within 5 seconds.

5.3.1.4 Retransmission Heartbeats

To determine the healthiness of the client connection on the TCP/IP channel, the RTS will regularly send
heartbeats to the client. The heartbeat frequency is 30 seconds. The client must respond with a
Heartbeat Response. The timeout of this heartbeat response is set at 5 seconds. If no response is
received by the RTS within this timeframe, RTS will disconnect the session.

A Heartbeat Response is an exact copy of the incoming Heartbeat.

5.3.1.5 Retransmission Request

A Retransmission Request consists of a Packet Header and a Retransmission Request (201).

Table 7. Retransmission Request Packet Header

PktSize
MsgCount
Filler
SeqgNum
SendTime

Table 8. Retransmission Request Message

MsgSize
MsgType
ChannellD
Filler
BeginSegNum

EndSegNum

Example of Retransmission Request

32

Not used

The number of nanoseconds since January 1,
1970, 00:00:00 GMT, precision is provided to the
nearest millisecond.

16
201
Depending on the broadcast stream

Message sequence number of first message in
range to be resent
Message sequence number of last message in
range to be resent

Assume client application received following packets from real time multicast channel 1

OMD-D Developers Guide Developers Guide

Channel | Packet Sequence Message | Message received Message Gap (Y/N)
number
1 101 Msgl Msg 1 (101) N
Msg2 Msg 2 (102)
Msg3 Msg 3 (103)
1 104 Msga Msg 4 (104) N
Msg5 Msg 5 (105)
Msgb Msg 6 (106)
1 109 Msg7 Msg 7 (109) Y (Missing messages with
Msg8 Msg 8 (110) sequence number 107-108)

Client application should send following Retransmission Request Message to recover missing
messages (Seq # 107-108)

MsgSize 16
MsgType 201
ChannellD 1
Filler

BeginSegNum 107
EndSegNum 108

5.3.1.6 Retransmission Response
After sending a Retransmission Request, the RTS will respond with a Retransmission Response
message. The most important field in the response message is the RetransStatus. Below are the

possible values and what they indicate:

Table 9. Retransmission Response statuses

Retransmission Response Meaning
Status

0 Request accepted
1 Unknown/Unauthorised Channel ID
2 Messages not available
100 Exceeds maximum sequence range
101 Exceeds maximum requests in a day

Note

It is very important to stop sending retransmission requests for the current day after
being rejected with reason 101. Clients may contact us for assistance.

5.3.1.7 Retransmission Message
Upon receiving Retransmission Response with Status '0', the RTS will start sending packets containing
the requested messages. The sequence number of first requested message will be used as sequence
number in packet header.

5.3.1.8 Retransmission Limits

Below is a table detailing the limits imposed on the Retransmission Service:

Table 10a. Retransmission System Limits for OMD-D

OMD-D Developers Guide Developers Guide

Last number of messages available per channel ID 50,000
Maximum sequence range that can be requested 10,000
Maximum number of requests per day 1,000
Logon timeout (seconds) 5
Heartbeat interval (seconds) 30

Table 10b. Retransmission System Limits for OMD-Index

System Limit

Last number of messages available per channel ID 50,000

Maximum sequence range that can be requested 10,000

Maximum number of requests per day 1,000

Logon timeout (seconds) 5

Heartbeat interval (seconds) 30
Note

Clients cannot make further retransmission requests due to the number of requests for the
day exceeding the maximum (i.e. 1000) may contact us for assistance.

OMD-D Developers Guide

Developers Guide

5.3.1.9 Processing of RTS retransmission data

Figure 1. Workflow of Retransmission

Begin

/

Retrans due to
gap detected

Gap too big ?

No

v

Push to request
queue

i

Connected to
RTS ?

——No-p Connect to RTS

Yes———

Gap is not
recoverable by
RTS

Yes

A J

Pop request at head
of request queue

Split to multiple
requests

Yes(Reject code = 100)

Y

Request
Accepted ?

Yes
(Reject code = 0)

Process received
message

Exceed max
seq range ?

A

No

(Reject code = 2)

- End

(Assuming a client is authorised to that channel ID and has not reached the maximum request limit.)

Please refer to APPENDIX C - Pseudo code for processing retransmission data for example on
handling data from OMD-D Retransmission server.

5.3.1.10 Compression on Payload Message from Retransmission

Same as real time and refresh messages, the field ‘Compression Mode’ in packet header indicates
whether compression has been applied on the payload messages returned from the retransmission

OMD-D Developers Guide Developers Guide

server. The returned payload, which is from the channel involving the compression feature, would
normally have the packet header with the Compression Mode = 1.

Clients should always read the Compression Mode in the packet header and apply RFC-1951 DEFALTE on
the returned payload before processing the messages.

Important : Before applying the RFC-1951 DEFLATE on payload, clients should ensure the full message
has been received (i.e. same length as packet size).

Please note: Message traffic will be reviewed regularly, and would turn on compression when needed.
Therefore, it is suggested client to implement system logic to determine whether executing or bypassing
the decompression based on the “Compression Mode” field in packet header, to minimise future system
change.

5.3.2 Refresh Service

The OMD-D feed provides a refresh service (RFS), which allows clients to start intraday or recover from
significant packet loss. The refresh is available per channel.

RFS periodically provides a full snapshot of the market. Not all the messages available from the live feed
can be recovered from the refresh. However, all the message types, necessary for reconstructing an up-
to-date image of the market, are available from the refresh.

The refresh packets are disseminated via dedicated multicast streams.

Similar to real time data transmission, the refresh data also come from two redundant lines, A and B.
Clients can apply the Line Arbitration mechanism described in 5.2.2 Line Arbitration, except that there
is no retransmission.

It is advisable that clients utilise the refresh service under the following situations:

Intraday start

Large message gap

Delay in the RTS retransmission
RTS retransmission failure

Bl A

5.3.2.1 RFS Snapshot

Please refer to the OMD-D Interface Specification for the coverage of snapshot data.

5.3.2.2 Processing a Refresh

Processing the refresh while coping with the live feed may be a challenging piece of functionality in the
feed handler. There are several things to think about in order to process the refresh properly. The 4
main areas, in which problems may perhaps arise, are:

Connectivity

Synchronisation

Determine a full refresh snapshot
Sequencing of events

PwnNpE

Connectivity

OMD-D Developers Guide Developers Guide

There are 2 data streams that need to be handled during the refresh:

1.
2.

Live feed multicast
Refresh feed multicast

Synchronization

Subscribe to the real time MC channel and cache received messages.

Subscribe to the corresponding refresh multicast channel. Once subscribed, if messages are
received instantaneously, clients should discard all messages till the arrival of a Refresh Complete
message. The Refresh Complete message marks the beginning of the next refresh cycle as well as
the end of the previous refresh cycle.

Wait for the next wave of snapshot data. Process all messages until the next Refresh Complete
message is received.

Store the LastSegNum sequence number provided in the above message.

If Sequence Reset message is received, discard all refresh messages received in the current refresh
cycle. and restart refresh processing afresh in the next refresh cycle which will be marked by the
appearance of the next Refresh Complete message

Unsubscribe from the refresh MC channel.

Discard the cached real time messages with sequence number less than or equal to LastSeqNum
found in the Refresh Complete message, except for Sequence Reset messages which need to be
processed. Please refer to Section 10.4 for details.

Process the remaining cached real-time messages and resume normal processing.

Determine a full refresh snapshot

When subscribing to OMD-D refresh multicast channels, clients should handle the following situations
to recover a full image of the market:

The first message received is a Heartbeat

If there is no message transmission (channel idle) in a refresh multicast channel, OMD-D sends
Heartbeat messages at a regular time interval (currently it is set to 2 seconds) in the interim period.
Heartbeat message can be sent in the middle of a refresh cycle or between two refresh cycles.

The first message received is a Refresh Complete message

Clients ignore the first Refresh Complete message and the subsequent Heartbeat message(s) in a
refresh multicast channel. The next refresh snapshot starts with a message other than Heartbeat
and ends with the arrival of the second Refresh Complete message.

The first message received is neither Heartbeat nor Refresh Complete message

Clients are in the middle of a refresh cycle and cannot receive a full refresh snapshot from this cycle.
They should NOT process any message at the moment. Simply skip message(s) until a Refresh
Complete message is received. Usually, OMD-D sends refresh snapshot at a regular interval.
Heartbeat may be disseminated in between two rounds of refresh snapshots, or there can be two
rounds of refresh snapshots without Heartbeat in between if time gap is 2 seconds or less. With or
without Heartbeats, Clients can obtain a full market snapshot in the next refresh interval after the
first Refresh Complete message received.

Note
When the Clients listen to the refresh channels for the latest images, they may

receive Refresh Complete message with “0” LastSeqNum in some channels. This
indicates that no messages have been published in the corresponding real-time

OMD-D Developers Guide Developers Guide

channels. That normally happens before market opens or may be due to no market
activities.

In the case of LastSeqNum being “0”, if the Clients receive only Heartbeat messages
with SeqNum = “1” in real-time channels and they detect no packet loss by Line
Arbitration or retransmission (i.e. the RTS returns “2 — Message not available”),
OMD-D is running normally and the Clients have not missed any packets in the real-
time channel.

Sequencing of events

It is important for clients to know which multicast channels hosts reference data for what other
channels. Clients should not process any data (except for the reference data) until the full reference
data is processed.

This implies the order of requesting refresh that clients should obey.

If the feed handler is started intraday, clients should first go for the refresh of channels that serve
reference data. Only after the refresh of the reference data is received, clients should ask for the refresh
of trades, order books, etc.

Note

There is no TCP retransmission for refresh. Clients must monitor for packet loss on
the refresh channels and wait for the next snapshot if loss is detected.

Exception Handling
— Arrival of Sequence Reset message in real-time channel in the middle of a Refresh cycle

The following steps are suggestions for handling of a rare situation where Sequence Reset messages
are received while processing Refresh messages

1. Discard the Refresh messages received during the current Refresh cycle

2. Reset the next expected sequence number to 1 which should be the same as the value of
NewSeqNo field in Sequence Reset message

3. Clear all cached data for all instruments.

4. Subscribe to the corresponding Refresh channels of the real time multicast channels to receive
the current state of the market, following the same steps in this section for handling messages
from Refresh channels

OMD-D Developers Guide Developers Guide

Figure 2. Workflow of Refresh

Cache messages of
realtime multicast
channel(s)

Y

Subscribe coresponding
refresh channel(s)

y
Ready for reading new
batch of snapshot
messages

Y

RFS had already started
sending snapshot messages at
current publishing interval

Wait for Refresh
complete message

A

No
\ J

Discard all snapshot
Read the refresh messages
messages i

|

Store last seq number #
(LastSegNum)

A

Message gap
detected ?

Process the
refresh messages

L

Refresh Complete
message ?

Unsubscribe from
Multicast channel

A

Apply the cached live messages

with seq number > LastSeqNum e

Please refer to APPENDIX D — Pseudo code for processing Refresh snapshot packet for example on
handling data from OMD-D RFS.

OMD-D Developers Guide Developers Guide

6 RACE CONDITIONS

The real-time order/trade data and reference data are disseminated via separate channels, so users need
to be aware of the possibility of a race condition.

Some examples as follows:

- An Instrument Definition (303) message and Commodity & Class Status (322) may be sent
marking an instrument as suspended. However, for a very short time after this message, the
regular order and trade information for this instrument may continue to arrive.

- A Market Status (20) message marking the trading session as closed, but real time data for the
same market may continue to arrive for a short time afterwards.

- During start of the day, an Add Order (330) message, mainly for “Good Till Cancel” orders
carried forward from the previous trading day, may be sent before the static data arrives.

7 AGGREGATE ORDER BOOK MANAGEMENT

Book updates are sent by OMD-D via Aggregate Order Book (353) messages. Each message may contain
any combination of new, changed or deleted entries for a book or clear the whole book. The nature of an
entry is defined by its UpdateAction.

Table 11. Actions on Aggregate Order Book Messages

Acion _______________________[|opescripion __________

New Create/Insert a new price level

Delete Remove a price level

Change Update aggregate quantity at a price level
Clear Clear the whole book

General Rules

e All entries within an Aggregate Order Book message must be applied sequentially.

e Clients must adjust the price level of entries below deleted or inserted entries.

e If aclear aggregate order book message is received, clients should clear all entries in the order book.

¢ The field “NumberOfOrders” represents the number of normal orders only. When only implied
quantity is presented at the particular price level, but no normal order, the value of the field
“NumberOfOrders” would be equal to 0.

e The field “AggregateQuantity” declares the aggregated quantity of normal order while the field
“AggregatelmpQuantity” declares the aggregated quantity of implied order. Subject to clients’
business needs, clients may consider summing up these two quantities in displaying the aggregate
order book in their service.

For DS and DP
¢ If a new book entry causes the bottom entry of a book to be shifted out of the book, i.e. below the
10* price level,
1. Clients must delete all entries below the 10t price level since there would not be any Aggregate
Order Book Update message sent on those price levels (Implicit delete).
2. If the book shrinks again and these entries shifted back to the top 10 price levels, OMD-D will
resend the entries at their new price levels with the latest updates.
e |f a match causes an order to be removed so that there are now less than 10 levels visible, then OMD-
D will also automatically send the additional price level(s) to make up the 10 price levels.

For D-Lite
e If a new book entry causes the bottom entry of a book to be shifted out of the book, i.e. below the 5%
price level,

OMD-D Developers Guide Developers Guide

1. Clients must delete all entries below the 5t price level since there would not be any Aggregate
Order Book Update message sent on those price levels (Implicit delete).
2. If the book shrinks again and these entries shifted back to the top 5 price levels, OMD-D will
resend the entries at their new price levels with the latest updates.
¢ |f a match causes an order to be removed so that there are now less than 5 levels visible, then OMD-
D will also automatically send the additional price level(s) to make up the 5 price levels.

Please refer to Section 6 — Aggregate Order Book Management in the Interface Specification of HKEX
Orion Market Data Platform Derivatives Market Datafeed Products for different scenarios on how OMD-

D sends Aggregate Order Book message.

You may also refer to APPENDIX E - Pseudo code for processing Aggregate Order Book Message for
example on handling Order Book messages from OMD-D server.

8 FULL NORMAL ORDER BOOK MANAGEMENT

Developers maintain order books from Order Update Messages for all normal orders. Every event in the
full order book is reported by OMD-D with the following message types being disseminated:

Table 12. Order Update Message Types

Message Type [Name |

330 Add Order

331 Modify Order
332 Delete Order
335 OrderBook Clear

General Rules

e Clients should be able to uniquely identify the order (OrderID is the unique identifier per OrderBookID
and Side)

e Determine the price and quantity of an order

e C(lear the orderbook when OrderBook Clear (335) message received

Managing Full Normal Order Book

e Anorderinserted at an existing position shifts the order on that position down (and all orders
below as well. Value ‘1’ denotes the highest ranked order position.

e Modify Order (331) message signals that the order has been modified. The current rank may
or may not be lost in the process ‘OrderbookPosition” will show the new rank within the book.

e Delete Order (332) message tells the recipient to remove the order reference from the
orderbook.

e The Orderbook Clear (335) message is used to inform clients that all existing orders should be
removed from both the bid and ask sides of the specified orderbook. The message is typically
used at the end of Pre-Open session

9 FULL NORMAL ORDER BOOK AND AGGREGATE IMPLIED QUANTITY

Clients may consider building one consolidated order book by using the full normal order book (Reference
to 8 FULL NORMAL ORDER BOOK MANAGEMENT) and Aggregate Implied Quantity (337) messages,
subject to their business needs.

OMD-D Developers Guide

Developers Guide

General Rules

e At the same price level, the priority of Normal order is always higher than the aggregate implied

quantity.

e Aggregate implied quantity is not considered as normal order and would only be updated via

Aggregate Implied Quantity (337) message.

e Add the aggregate implied quantity into the consolidated order book when Aggregate Implied

Quantity (337) message at the given price level is received at the first time.

e Remove the aggregate implied quantity at the given price level from the consolidated order book
when Aggregate Implied Quantity (337) message with “ImpliedQuantity = 0” is received.

An example is illustrated as below:

Full Normal Order Book (Built by Add Order (330) / Modify Order (331) / Delete Order (332) messages)

1 2

9999 10000 7 1
2 3 9999 10005 2 2
3 5 9999 10005 1 3
4 1 9998 10005 1 4
5 1 9998 10005 3 5
6 2 9998 10005 2 6
7 1 9998 10005 1 7
8 4 9997 10005 4 8
9 1 9997 10006 2 9
10 5 9992
11 6 9991
Implied Order Book (Built by Aggregate Implied Quantity (337) message)
Bid Ask
Aggregate Quantity Price Price Aggregate Quantity
15 9999 10000 7
8 9998 10001 9
5 9996 10003 6

OMD-D Developers Guide

Developers Guide

10

10

Consolidated Order Book

Order #

Implied

4

Implied

8

Implied
Implied
10

11

Bid

Quantity

9995

Price

9999

9999

9999

9999

9998

9998

9998

9998

9998

9997

9997

9996

9995

9992

9991

10005

10006

Price

10000

10000

10001

10003

10005

10005

10005

10005

10005

10005

10005

10005

10006

10006

Ask

Quantity

7

EXCEPTION HANDLING AND SPECIAL TRADING CONDITION

Order #

Implied

Implied

Implied

Implied

Implied

Listed below are some common exception handling procedures that clients must be capable of when
subscribing to OMD-D:

Exception Handling
- Late connection
- Intra-day refresh

- Client application restarts
- Sequence Reset Message

- OMD-D restarts before and after market open

- OMD-D component failover

OMD-D Developers Guide Developers Guide

10.1

10.2

- OMD-Index component failover
- Site failover

Special Trading Conditions
- Hong Kong Holiday which is not a Holiday in Mainland

In order to facilitate clients’ verification of their exception handling ability, some of the exceptional
scenarios are included in the Readiness Test which clients have to pass in order to get on board.
Emergency drills are also held in a production-like environment on a regular basis for clients to test their
systems and practise their operations on the handling of other exceptional scenarios such as backup site
failover. Please refer to the following sub-sections for the availability of test/drill session for each of the
exceptional scenarios. Client notice will be issued to announce the schedule and coverage of a regular
rehearsal in advance.

Late Connection / Startup Refresh

When client starts late, all reference data should be recovered before the current image for all
instruments across all channels.

Please refer to section 5.3.2.2 Processing a Refresh for recovery procedures.
Note
- Some channels may host reference data for other channels.
- Channels which depend on other channels for reference data cannot be
processed before full reference data has been received

- Clients must define relationships between channels

Clients can test late connection in the Readiness Test environment as they wish.

Intra-day Refresh

For each real time multicast channel (except those for Trade, Trade Amendment & Quote Request which
are not recoverable via the Refresh service), there exists a corresponding refresh multicast channel on

which snapshots of the market state are sent at regular intervals throughout the business day.

When clients experienced an unrecoverable packet loss on a certain channel during the day, a snapshot
is only needed for that channel.

Sequencing of events

1. Clear all cached data on that channel

2. Caches real time messages in the multicast channel that previously experienced packet loss

3. Listens to the corresponding refresh multicast channel and waits for the next snapshot (refer to
5.3.2.2 Processing a Refresh - Determine a full refresh snapshot)

4. Processes all refresh messages until the arrival of a Refresh Complete message

5. Store the LastSeqNum sequence number provided in the Refresh Complete message

6. Disconnects from the refresh multicast channel

7. Processes the cached real time messages with sequence number greater than the LastSeqNum.

Otherwise, drop processing it.
Now the clients maintain the current market image.

This exceptional scenario is covered in the Readiness Test.

OMD-D Developers Guide Developers Guide

10.3

10.4

10.5

10.6

Client Application Restarts

Similar to “Late Connection” as described earlier.
Sequence Reset Message

Sequence Reset Message from real time channels

Sequencing of events

1. Receive “Sequence Reset Message” from any real time multicast channel

2. Reset the next expected sequence number to 1 which should be the same as the value of NewSeqNo
field in Sequence Reset message

3. Clearall cached data for all instruments on that channel.

4. Subscribe to the corresponding refresh channel of the real time multicast channel to receive the
current state of the market. (refer to 5.3.2.2 Processing a Refresh — for handling messages
from Refresh channels)

5. Resume to process real time messages

Packet loss detection when processing Sequence Reset Message

After a Sequence Reset, the first UDP packet should have a sequence number 1. However, this packet is
lost and clients start receiving packet with sequence number 2 and onwards. Clients can try to recover it
from the redundant line. If the lost packet is unrecoverable, clients should start buffering the live feed
and send a retransmission request immediately.

Once clients finished processing the retransmitted messages from RTS, clients can maintain the latest
market image by handling the buffered data and then the live feed.

Sequence Reset Message from Refresh channels
Refer to 5.3.2.2 Processing a Refresh — for handling sequence reset message from Refresh channels)

This exceptional scenario is covered in the Readiness Test.

OMD-D Restarts Before Market Open

In case of OMD-D performs start-of-day twice (errors encountered during first start-of-day). The second
start-of-day should trigger Sequence Reset in all channels. Clients should discard all reference data
received in the first start-of-day and process the second start-of-day.

This exceptional scenario is covered in the Readiness Test.
OMD-D Restarts After Market Open (Intraday Restart)

When OMD-D fails during trading hours, besides failing over to the backup site to resume service, OMD-
D may be recovered by Intraday Restart where OMD-D will be shut down and then restarted. When OMD-
D is shut down, retransmission services in both primary and backup sites will be disconnected and no
multicast traffic, including heartbeat, will appear on all real-time and refresh channels. Clients will be
informed if Intraday Restart needs to take place.

Clients will be notified when OMD-D is subsequently restarted. Upon receipt of our notification, all clients
should clear all their internal cache and reconnect to OMD-D afresh in the same way as their systems
start up late and connect to OMD-D only after the market has opened. In this situation, clients should not
rely on the presence of Sequence Reset messages in any channels upon their reconnection and they need
to go through the refresh service (see 5.3.2.2) to establish the latest market snapshot.

The duration between OMD-D’s shutdown and the subsequent restart could be a timespan of an hour
and clients need to observe announcement made.

Developers Guide

OMD-D Developers Guide

10.7

This exceptional scenario is among the possible scenarios to be covered in a regular emergency drill.

OMD-D Component Failover

Channels under Streaming Component

Component failover on the following channels under streaming component would only impact one of the
OMD-D lines. In case no live data can be received in one of the OMD-D lines (say line A), there is no impact
to clients as OMD-D would continue publishing data via the alternative line (line B). Clients can reapply
the line arbitration as usual when OMD-D resumes the service and publish the data from line A. Data
published during the interruption would not be resent after line A has resumed the service.

The data published in the resumed line might be from backup site and thus there could be a larger time
difference between two lines after the component failover.

This exceptional scenario is covered in the readiness test.

Channels under Streaming Message Type List Datafeeds
Component
Level 2 Price, COP and Trade Aggregate Order Book Update (353) DP
Channel Calculated Opening Price (364)
Trade (350)
Order, COP and Trade Channel Add Order (330) DF
Modify Order (331)
Delete Order (332)
Orderbook Clear (335)
Aggregate Implied Quantity (337)
Calculated Opening Price (364)
Trade (350)
Trade Channel Trade (350) DT
Quote Request Channel Quote Request (336) D-Lite, DS, DP and DF
Statistic Channel Trade Statistic (360) DP
Commodity & Class Status and Commodity & Class Status (322) D-Lite, DS, DP and DF
Trigger Channel VCM Trigger (324)
THM Trigger (325)

Channels under Conflated Component

Component failover could cause the following channels under conflated Component to experience an
outage for a few minutes. When the service resumes, in the situation mentioned in table, the following
recovery messages will be published to update clients for the latest market image.

This exceptional scenario is covered in the readiness test.

Channels under Conflated
Component

Message Type List

Datafeeds

Reference Data Channel

Commodity Definition (301)
Class Definition (302)
Instrument Definition Base (303)
Combination Definition (305)

D-Lite, DS, DP and DF

Market & Instrument Status Channel

Market Status (320)
Instrument Status (321)

D-Lite, DS, DP and DF

OMD-D Developers Guide

Developers Guide

Open Interest Channel Open Interest (366) D-Lite, DS and DP

Level 2 Price and COP Channel Calculated Opening Price (364) D-Lite and DS
Aggregate Order Book Update (353)

Statistic Channel Trade Statistic (360) D-Lite and DS

Market Alert Channel Market Alert (323) D-Lite, DS, DP and DF

Implied Volatility Channel Implied Volatility (367) DP

Trade Amend and Block Trade Trade (350) DT, DP and DF

Channel Trade Amendment (356)

Order Feed Channel Add Order (330) D-Lite Order Feed

Recovery Type

Message Type List

Remarks

Message Resent

Commodity Definition (301)
Class Definition (302)
Instrument Definition (303)
Combination Definition (305)
Market Status (320)
Instrument Status (321)
Market Alert (323)

Trade (350)

Trade Amendment (356)
Trade Statistic (360)*

Open Interest (366)

Implied Volatility (367)

For any new updates during the
outage, corresponding messages will
be resent.

Duplicate messages may be
received. For example, Trade
Statistics messages would be resent
after the failover, however, clients
may have received them before the
failover. Clients’ application should
be able to perform normally and
present the correct latest market
images despite the resent messages.

* Applicable to D-Lite and DS only.
Some intermediate updates may be
lost during the failover, but most of
them will be resent. Clients should
refer to the last received message as
the latest market information

Aggregate Order
Book

Aggregate Order Book Update (353)

For instrument having updates
during the outage, Aggregate Order
Book Update (353) message with
update action “Order Book Clear”
will be sent, followed by a series of
message with update action “New”
for clients to rebuild the latest
aggregate order book image.

For instrument without updates
during the outage, Aggregate Order
Book Update (353) message with
update action “Order Book Clear”
will not be sent. Clients can keep
building the aggregate order book as
usual.

If “Sequence Gap” is detected in both data lines on the channel, clients should consider the recovery
steps as documented in (Section 5.3 Recovery)

Refresh Channels

In case “Sequence Reset Message” is received from refresh channels, clients should clear the cached
refresh messages and reset the sequence number of corresponding channel. (Refer to 5.3.2.2
Processing a Refresh — for handling sequence reset message from Refresh channels)

OMD-D Developers Guide Developers Guide

10.8

10.9

This exceptional scenario is covered in the Readiness Test.

OMD-Index Component Failover
Index Channels

In case of the component failover of the index channels, the dissemination of Index Data (71) message
will be resumed at the next update period.

If there is any update on index data during the failover period, a data report with those missing index
data will be provided to Index Feed subscribers at the end of the business day.

Refresh Channels

In case “Sequence Reset Message” is received from refresh channels, client should clear the cached
refresh messages and reset the sequence number of corresponding channel. (Refer to section 6.2.2
Processing a Refresh — for handling sequence reset message from Refresh channels)

Site Failover

In case of severe technical problem that OMD-D needs to failover to the backup site for resumption of
market data service, Disaster Recovery Signal (105) (referred to as “DR Signal” hereafter) message will
indicate the status of OMD-D on backup site for client actions.

A dedicated multicast channel is assigned to transmit DR Signal. During normal days, OMD-D starts up on
the primary site, the DR Signal message only carries heartbeats. In case of the backup site taking over the
primary site, the DR Signal transmitted from the dedicated channel will carry a DR status instead of
heartbeats. At that point, the multicast addresses of real-time and refresh data will remain the same
whereas clients should switch to the backup IP addresses to connect to the backup RTSs for
Retransmission Service.

When OMD-D starts operating on the backup site, DR Signal messages will be sent out with DR Status “1”
(DR in progress) until the site failover process is completed where the DR Status in the DR Signal message
will be changed to “2” (DR completed). At this point, OMD-D is considered operating normally on the
backup site and the latest market snapshots can be obtained from the Refresh channels. OMD-D will
continue transmitting the DR Signal with DR Status “2” until end of business day.

Clients are advised to clear all OMD-D data previously cached when DR Status “1” is detected in the DR
Signal and prepare to execute their failover procedure if any. When DR Status “2” (DR completed) appears,
clients could rebuild the market image based on the refresh service similar to the case when their feed
handler systems are brought up intraday (see section 5.3.2 on how to rebuild the market image from the
refresh service). Clients are recommended to build automatic recovery mechanism so as to enable timely
recovery on their side.

The following describes the OMD-D site failover behaviour based on which clients can automate their
systems to resume market data service against the OMD-D backup site:

- Multicast data including heartbeat from all real-time & refresh channels is unavailable

- Clients are unable to connect and log on RTS or, in the case of an already established RTS session,
the TCP connection is disconnected or appears stale with no response from RTS servers
Client who has connected to RTS on backup site is not affected.

- OMD-D starts broadcasting DR Signal with DR Status “1” (DR in progress) repeatedly during the
execution of recovery procedure

OMD-D Developers Guide Developers Guide

- During the DR Status “1” (DR in progress), clients should clear all previously cached market data
and prepare for any site failover operation if necessary.

- OMD-D starts broadcasting the DR Status “2” (DR completed) status repeatedly once OMD-D has
finished the recovery procedure and is functioning normally. Refresh and real time services are
ready for clients to rebuild the latest market image.

- After successful site failover, clients should follow the Interface Specifications and this Developer
Guide to get the latest market snapshot from the refresh service before resuming receiving real-
time data.

- In any event, client systems must be able to detect the unavailability of the primary site and the full
readiness of the backup site, i.e. when DR Status “2” is received. For example, client systems which
do not follow the recommended logic above but require “shutdown then restart” as part of their
recovery procedure may not rely on DR Status “1” (DR in progress) for clearing all previously cached
market data as this might have been done before the systems have reconnected to the OMD-D on
the backup site. Nonetheless, the systems should still wait for DR Status “2” (DR completed) to start
recovering through the refresh service as in the case of late client system startup when OMD-D is
already disseminating data.

- The duration from the loss of all multicast data (i.e., primary site shutdown) until the dissemination
of the DR Signal message with the DR Status “2” (DR completed) (i.e., service resumption in the
backup site) could be as short as 5 minutes. Clients should use this 5-minute failover time as a
design objective in their automated OMD-D site failover solution.

Please note that OMD-Index Feed service is independent from OMD-D service, a dedicated multicast
channel for OMD-Index DR signal declares the status of OMD-Index Feed service. Clients subscribing
OMD-Index Feed should follow the same procedures as above to process the index data received from
the OMD Index Feed. It is rare but possible that DR Signal is disseminated for OMD-Index to indicate the
failover of OMD-Index to DR site, but no DR Signal is disseminated for OMD-D which indicates that OMD-
D keeps running in the Primary site without failover.

Please refer to the OMD-D Connectivity Guide for the two dedicated DR multicast channels assigned for
OMD-D and OMD Index Feed.

This exceptional scenario is covered in the Readiness Test. Since the site failover processes of clients are
likely to be slightly different if carried out in the production environment (for example, connection via

different IP addresses), this scenario is also among the possible scenarios to be covered in a regular
emergency drill.

10.10Special Trading Condition

Clients’ system should have the flexibility to handle the variations of OMD-D and OMD-Index data
transmission pattern due to the following special trading conditions:

Hong Kong Holiday which is not a Holiday in Mainland

For OMD-Index, only index reference and real-time index data of non Hong Kong indices will be
disseminated via the respective channels and clients should expect receiving only heartbeat messages
from all other OMD-Index channels.

No matter whether it is holiday in Mainland, OMD-D will be operated as usual to support the holiday
trading day in the Hong Kong Derivatives Market on all Hong Kong holidays, except the holiday of New
Year’s Day.

OMD-D Developers Guide Appendix

APPENDIX A - Pseudo code to connect and receive multicast channel

An example shows how to set up UDP socket and join multicast channel.
int sock_fd;

int flag =1,

struct sockaddr_in sin;

struct ip_mreq imreq;

// Create a socket
sock_fd = socket(AF_INET, SOCK_DGRAM, 0);

// Set socket option
setsockopt(sock_fd, SOL_SOCKET, SO_REUSEADDR, &flag, sizeof(int));

// Set IP, Port

memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);

// Bind
bind(sock_fd, (struct sockaddr *) &sin, sizeof(struct sockaddr))

// Add to Multicast Group
imreq.imr_multiaddr.s_addr = inet_addr(mcAddress);
imreq.imr_interface.s_addr = inet_addr(interface);

setsockopt(sock_fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const void *)&imreq, sizeof(struct p_mreq));

An example shows how to read data from a multicast channel.

size_t len;

socklen_t size = sizeof(struct sockaddr);
struct sockaddr_in client_addr;

char mReadBuffer[2046];

memset(mReadBuffer, 0, sizeof(mReadBuffer));

// Read the data on the socket
len = recvfrom(fd, mReadBuffer, sizeof(mReadBuffer), O, (struct sockaddr *) &client_addr, &size);

© Copyright 2026 HKEX Classific%idré3nternal

OMD-D Developers Guide Appendix

APPENDIX B - Pseudo code of Line Arbitration

An example shows how clients process a packet received from OMD-D. This function handles data
received from Line A or Line B multicast channels.

void processPacket(Packet packetBuffer)
{
if (packetBuffer.getSeqNum() > expectedSeqNum) {
//Gap detected, recover lost messages

//Spool Packet in memory and wait for short period
//Gap may be filled from next few incoming packet,
//either from same line or alternative line
spoolMessages(packetBuffer);

}

else if (packetBuffer.getSeqNum() + packetBuffer.getMsgCount() < expectedSeqNum) {
//Duplicate packet, ignore

}

else if (packetBuffer.containsSeqNum(expectedSeqNum)) {
//Process the packet if it contains a message
//with sequence number = expectedSeqNum
int msgProcessCount = 0;

for (int i=0; i < packetBuffer.getMsgCount(); i++) {

if (packet.getSeqNum() + msgProcessCount == expectedSeqNum) {
extractMessage(message, packetBuffer, msgProcessCount);
processMessage(message);
expectedSeqNum++;

}

else {

//Duplicate message, ignore
}

msgProcessCount++;

© Copyright 2026 HKEX Classific@idré3nternal

OMD-D Developers Guide Appendix

An example shows a timer function processes the spooled messages at a regular time interval.

void checkMessageSpoolTimer()
{
MessageSpool::iterator i = mMessageSpool.begin();
// Iterate through the message spool
while (i '= mMessageSpool.end())
{
Message message = i->second;
// If the current packet sequence number is larger than expected,
// there's a gap
if (message.getSeqNum() > mNextSeqNum)
{
//No retrans request sent for this message before
if (! message.getRetransRequested()) {
sendRetransRequest(mNextSeqNum,
message.getSeqNum() - 1);
return;
}
//time limit hasn't been reached, so it's still not an
// unrecoverable gap. Return and wait..
if (message.getTimeLimit() < poolTimeLimit) {
return;
}else {
//The RetransRequest failed or took too long and the gap wasn't
//filled by the other line - The messages have been permanently
//missed. Recover the lost data from Refresh Server (RFS)
recoverFromRefresh();
}
}
if (message.containsSeqNum(mNextSegNum))
{
// The packet contains the next expected sequence number, so
//process it
processPacket (message);
}
}
}

© Copyright 2026 HKEX Classifichidré3nternal

OMD-D Developers Guide Appendix

APPENDIX C - Pseudo code for processing retransmission data

An example shows how clients process incoming data from OMD-D Retransmission server. It handles
Heartbeat, Retransmission Logon Response, RetransRequest Response and Retrans data.

void read()

{
readBuffer(mRtsBuffer);

while (true)

{
// Get packet information at mRtsBuffer
PacketHeader* packet = (PacketHeader*) mRtsBuffer;

// If the entire packet is in the buffer, process it
if (isEntirePacket(mRtsBuffer))
{
// If Heartbeat (i.e. packet with 0 MsgCount)
if (packet->mMsgCount == 0)
{
sendRtsHeartbeat(mRtsBuffer, packet->mPktSize);
}
else
{
// check whether data is compressed or not
if (packet->mode == 0x01) {
// copy the packet header to uncompressed packet buffer
char uncompressedPacketBuffer[2048];
memcpy(uncompressedPacketBuffer, mRtsBuffer, sizeof(PacketHeader));

// get the compressed data size
// i.e. the packet size minus 16-byte packet header
int compressedDataSize = packet->pktSize - sizeof(PacketHeader);

// get the compressed data pointer
const char* compressedData = mRtsBuffer + sizeof(PacketHeader);

// decompress() will return the uncompressed data and size
char* uncompressedData = uncompressedPacketBuffer + sizeof(PacketHeader);
decompress(compressedData, compressedDataSize,

uncompressedData, uncompressedDataSize);

// change the packet pointer to uncompressed packet buffer
packet = (PacketHeader *) uncompressedPacketBuffer;

// update the uncompressed packet size
packet->pktSize = uncompressedDataSize + sizeof(PacketHeader);

}

// Determine the kind of message(s) in the packet
uintl6_t msgType = packet.getMsgType();

switch (msgType)

{
case LOGON_RESPONSE_TYPE:
{

© Copyright 2026 HKEX Classifid8idri3nternal

OMD-D Developers Guide Appendix

LogonResponse *logonResponse
= (LogonResponse *)(mRtsBuffer + sizeof(PacketHeader));

processLogonResponse(logonResponse);
break;

}

case RETRANS_RESPONSE_TYPE:

{
RetransResponse* resp = (RetransResponse*) (mRtsBuffer + sizeof(PacketHeader));
processRetransResponse(resp);
break;

}

default:
processPacket(packet);

}
}
}

// Wait for the rest of the data to come from the socket
else
{
break;
}
}
}

© Copyright 2026 HKEX Classifid@dri3nternal

OMD-D Developers Guide Appendix

APPENDIX D - Pseudo code for processing Refresh snapshot packet

An example shows how clients process refresh snapshot data from OMD-D RFS server and merge with
realtime messages

void processRefreshPacket(Packet packetBuffer) {
static int expectedSeqNum = 0;
//First Message is Heartbeat or Refresh Complete Message
if(! isStartOfRefresh(packetBuff) {

return;
}
if (packetBuffer.getSeqNum() > expectedSeqNum) {
//Gap detected
clearSpoolMessage();
return;

}

else if (packetBuffer.getSeqNum() + packetBuffer.getMsgCount() < expectedSeqNum) {
//Duplicate packet, ignore
return;

}

else if (packetBuffer.containsSeqgNum(expectedSegqNum)) {
spoolMessages(PacketBuff, expectedSeqNum);

}

if (isRefreshComplete(packetBuffer)) {
List refreshMessagelList = getRefreshSpoolMessage();
processMessages(refreshMessagelist);

//Get spooled realtime message with seq num >= expectedSeqNum;
List realtimeMessagelist = getRealtimeSpoolMessage(expectedSeqNum);
processMessages(realtimeMessagelist);

© Copyright 2026 HKEX Classifid@dré3nternal

OMD-D Developers Guide Appendix

APPENDIX E - Pseudo code for processing Aggregate Order Book Message

An example shows how clients process Aggregate Order Book Message and update the internal order
book.

OrderBook mOrderBook;
void processAggregateOrderBook(AggregateOB aggregateOB) {
switch(aggregateOB.getAction())

case ADD:
int tickLevel = getTickLevel(mOrderBook, aggregateOB.getPrice());

insertOB(mOrderBook, tickLevel, aggregateOB);

//If Price level > 10, delete those order from OBMap
deleteOBExceedMaxPriceLevel(mOrderBook);

case Update:
int tickLevel = getTickLevel(mOrderBook, aggregateOB);
updateOB(mOrderBook, tickLevel, aggregateOB);

case Delete:
int tickLevel = getTickLevel(mOrderBook, aggregateOB);
deleteOB(mOrderBook, tickLevel, aggregateOB);
updateOBPriceLevel(mOrderBook)
case Clear:
clearOB(mOrderBook);

}
void insertOB(mOrderBook, tickLevel, newAggregateOB) {

newAggregateOB.setTickLevel(tickLevel);
mOrderBook.add(tickLevel-1, newAggregateOB);

for (int i=tickLevel; i < mOrderBook.getSize(); i++) {
AggregateOB aggregateOB = mOrderBook.get(i);
aggregateOB.updateTickLevel(mOrderBook);
aggregateOB.updatePriceLevel(mOrderBook);

© Copyright 2026 HKEX Classifidlidrd3nternal

OMD-D Developers Guide Appendix

APPENDIX F - Pseudo code for processing compressed multicast data

An example shows how clients process the compressed data.

void processMulticastData(const char* data, int len)

{
PacketHeader* packet = (PacketHeader *) data;

if (packet->pktSize !=len) {
// invalid packet size
return;

}

If (LineArbitration(packet))
{

return;

}

if (packet->mode == 0x01) {
// 0x01 = Data is compressed, need to decompress the data before processing

// copy the packet header to uncompressed packet buffer
char uncompressedPacketBuffer[2048];
memcpy(uncompressedPacketBuffer, data, sizeof(PacketHeader));

// get the compressed data size
// i.e. the packet size minus 16-byte packet header
int compressedDataSize = packet->pktSize - sizeof(PacketHeader);

// get the compressed data pointer
const char* compressedData = data + sizeof(PacketHeader);

// decompress() will return the uncompressed data and size
char* uncompressedData = uncompressedPacketBuffer + sizeof(PacketHeader);
decompress(compressedData, compressedDataSize,

uncompressedData, uncompressedDataSize);

// change the packet pointer to uncompressed packet buffer
packet = (PacketHeader *) uncompressedPacketBuffer;

// update the uncompressed packet size
packet->pktSize = uncompressedDataSize + sizeof(PacketHeader);

}

processPacket(packet);

© Copyright 2026 HKEX Classifididri3nternal

OMD-D Developers Guide Document History

DOCUMENT HISTORY

Version Date of Issue Comments

V1.0 2 Aug 2013 First Distribution Issue under the Derivatives Trading system,
HKATS
V2.0 11 Feb 2026 First Version under Orion Derivatives Platform (ODP)

© Copyright 2026 HKEX Classificatién/fernal

